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The shape of a magnetic liquid drop 

BY 0. E. SERO-GUILLAUME, D. ZOUAOUI, D. BERNARDIN 
AND J. P. BRANCHER 

Lemta UA CNRS 875, 2 Avenue de la For6t de Haye, 54504 Vandoeuvre-1Bs-Nancy Cedex, 
France 

(Received 11 March 1991 and in revised form 14 January 1992) 

The electromagnetic forces in a ferrofluid depend on the domain occupied by the 
fluid. We study here the equilibrium positions of a ferrofluid drop with a boundary 
which is partially or totally free. The method used is based on the minimization of 
the energy with respect to the shape of the drop. We show bifurcations of the 
solutions and hysteresis phenomena when the parameters vary. 

1. Introduction 
The problem of the equilibrium shape of a liquid with non-local forces is difficult. 

Non-local forces means here that the forces depend on the shape of the domain 
occupied by the fluid as in the case of magnetic fluids, molten metals or bodies with 
a self-gravity field. This coupling can produce instabilities or a non-trivial hydrostatic 
problem. For magnetic liquids a large literature exists on the subject, see for 
instance, Blums, Maiorov & Tsebers (1989) and Rosensweig (1985). Sneyd & Moffatt 
(1982), for molten metals, and Brancher & SBro-Guillaume (1983), for magnetic 
liquids, derived a variational principle for investigating equilibria of such fluids. In  
some sense the variable is the position of the domain, and the equilibrium is reached 
when the energy is extremum with respect to  this variable. The variations of energy 
are induced by variations of the boundary of the domain. Whether this extremum is 
a maximum or a minimum was not completely clear. But considering the dynamical 
problem, and assuming that the velocity field is potential, SBro-Guillaume & 
Bernardin (1987) have shown that the whole system of equations could be recast in 
Hamiltonian form. The variations are taken with respect to the value of the velocity 
potential on the free surface and to  the position of the free surface. In  a certain sense 
the free surface is a variable conjugate to this potential. The Hamiltonian is the sum 
of the kinetic energy and of the previously considered energy. Therefore this energy 
is a potential energy and has to be minimized to obtain equilibrium positions. This 
strategy had been proposed in Sneyd & Moffatt (1982), Brancher & S6ro-Guillaume 
(1985) but it has been only used for two-dimensional configurations, for which the 
machinery of complex variables can be used. 

Here we intend to determine equilibrium positions of axisymmetrical drops. 
Although the configurations are still two-dimensional, the method would be 
extendable to  the full three-dimensional case. 

In $2 we shall recall the equations of the problem in Newtonian and Hamiltonian 
form. From the Hamiltonian formulation we shall recover the derivative, or the 
variations of the potential energy with respect to variation of the surface. This 
derivative is expressed as a surface integral which involves the interface normal 
displacement. 
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In  $3, we deduce, from the energy derivative, a steepest descent algorithm. This 
algorithm is extended to the case of a sessile drop. The interaction of the drop with 
its support is simply modelled by an interfacial coefficient, which leads to  the 
Young's condition for the contact angle. 

The magnetic self-field potential and its normal derivative are calculated, in $4, by 
a boundary-integral method on the basis of a representation formula for a 
transmission problem. 

The last section is devoted to numerical results. We consider a ferrofluid with a 
linear magnetization law and we present the results for the free drop and for the 
sessile drop. The shape of the drop without gravitation is closed to  an ellipsoid 
although the curvature can be very different. In  the case of the sessile drop we can 
detect the bifurcation and see the appearance of hysteresis. This bifurcation is 
characterized by peaks or waves which appear a t  the interface. We shall calculate the 
wavelength, by a linear analysis, of the peaks for the case of a strip of ferrofluid and 
we shall compare it with the one obtained by computation. 

2. Dynamic and magnetic equations 
Let us recall that  a ferrofluid is a ferrite homogeneous suspension. When it is 

subjected to a magnetic field, say H,,, a self-field h is created, which depends upon the 
domain SZ, occupied by the fluid; 52, will be the exterior of 52,. We shall consider a 
simple isothermal model of magnetic liquids, see Rosensweig (1985), Brancher 
(1988), where the magnetization M is parallel to the total magnetic field H = H, + h, 
i.e. M = x ( H )  H.  

2.1. Mechanical equations 

The momentum equation and the conservation of volume can be written 

DV 
Dt 

p- = - V(p+pgz) + ,u, Ma VH, 

v .  v =  0. 

Note that, as M and H are parallel, 

M .  VH = V (1; M ( y  ) d y ) . 
The surface stress density is 

T = -pn-&o(M-n)2n  = -pn-& o n  M2 n 

(2.1 a )  

(2.lb) 

(2.1 c) 

(2.2) 

where n is the outward unit normal to the boundary S of SZ,, and M ,  is the scalar 
product in Euclidean space, of M and n. If we suppose that the velocity is potential, 
i.e. 

then (2.1 b)  implies 

and ( 2 . l a ) ,  (2 . lc ) ,  and (2.2) give the Bernoulli relation 

v = vcp, 

VZv = 0 in Q,, 
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We suppose that the exterior fluid is a t  a constant pressure, then with (2 .2) ,  (2 .3)  and 
Laplace law we can write: 

p $+$lVv12 +pqz-+,W -po If M ( y )  dy + a C  = k ( t ) .  (2 .4)  

C is the mean curvature of S and cr the interfacial coefficient. Let us write now that 
the normal velocity of S is equal to the normal velocity of the fluid, i.e. 

on S,  ae - % --- 
at an 

where x = e(a, t )  is the Lagrangian position of the fluid particles, 

2.2. Magnetic equations 
Now if Hi = H, +hi, in Q,, let us note that 

V A hi = 0, 

and then hi = Vu, in Q,. The magnetic inductions are Bl = p,,(Hl+M(H1)) in Q,, 
and B, = p, H, in Q,. They satisfy W - Bi = 0 in 52,. The normal component of B and 
the tangential component of H are conserved through S ,  i.e. H,,  = H l , + M ,  and 
H,, = Hit. Using the scalar potential ui, all these relations can be written 

V2ul = - V - M  in Q,, 

V2u,  = 0 in Q,, 

u, = u, on S ,  

( 2 . 6 ~ )  

(2 .6b)  

( 2 . 6 ~ )  

( 2 . 6 d )  

The problem is to find S, p, u,, u, which satisfy the relations (2 .3) ,  (2.4), (2.5), (2 .6) .  
Let us consider the magnetic coenergy: 

This coenergy is such that a variation SH produces a variation in Em given by 

&Em = B-SHd52. I 
U, = JQlpqzdQ, U, = u 

We also consider the gravitational, interfacial, and kinetic energy : 

(2 .8)  

and the Hamiltonian : 
1 

P 
Z =-(K+U,+U,-E,). (2 .9)  

The value vS on the surface of the velocity potential, and the surface X can be 
considered as conjugate variables, see SBro-Guillaume & Bernardin (1987), and SBro- 
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Guillaume & Brancher (1991) for a general treatment. Considering normal variations 
68 of the interface, the mechanical equations of the problem can be recast in the 
following Hamiltonian form 

(2.10a, h )  

We shall examine in detail at the next section the meaning of relations (2.10). 
Nevertheless, we can conclude now that the functional 

(2.11) 

is a real potential with respect to the positions and shapes of the surface S. Therefore 
the stable equilibrium positions of the system are obtained with the domain a, (and 
then Q,) which minimizes .Y-. 

One can consider that the minus sign before Em is a paradox. Let us recall that if 
Eg is the energy of the system, i.e. is such that 

6EZ = H .  SBdQ, s 
one can show, see Brancher & Sdro-Guillaume (1985), that the force is given by F = 
V(E,)  = - V ( E g ) ,  the gradient of Em is obtaincd by taking its variation with respect 
to the position of the particles, but keeping the current in the inductor fixed. For 
more details see the Appendix. 

3. Steepest descent algorithm 
3.1. The free drop 

In fact the relations (2.10) are equalities between linear functionals: ( 2 . 1 0 ~ )  means 

for any variations &,; and (2.10b) means 

with 

This relations holds for any 66 such that 

because of volume conservation. We have to minimize the potential defined by (2.1 1) 
under the volume conservation constraint ; therefore let us consider the Lagrange 
parameter h and the modified potential: 
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FIQURE 1.  The parameters and coordinate system for a sessile drop. 

lQll is the volume of a,. Setting 9, equal to zero in (3.1) we can easily deduce the 
variations of Vl with respect to any variations 68 of S ,  i.e. the 88 may have tangential 
components on S (for a direct calculation see Brancher & SBro-Guillaume 1985) : 

Relation (3.3) gives the steepest descent direction for minimizing Vl, which is 

(3.4) 

the parameter A ,  as we shall see later, has to be calculated with the help of condition 
(3.2). 

To decrease the potential we have to move each surface point in the direction given 
by (3.4), and thus we deduce the following algorithm : 

'I SZ?, Q:, So(So = a@) given, 

Skfl = Sk+eSOk with aQ:+l = Sk+l , )  
(3.5) 

SBk is calculated using (3.4) where all the quantities are evaluated by solving ( 2 . 6 ~ 4 )  
on Qf, then hk is given by 

B is a real positive parameter determined in such a way that the value of the potential 
decreases. 

3.2. The sessile drop 
Let us suppose now that the drop is lying on non-ferromagnetic horizontal plane C. 
The boundary is now composed of two surfaces S,, S,, see figure 1 ; S,  is the horizontal 
part of the interface, and L = S,  n 8, is the triple line. 

We must now consider a potential which takes into account the interaction 
between the drop and the plane. Let u1, a;, a: be the coefficients respectively of the 
ferrofluid interactions with the non-ferromagnetic fluid, with the solid non- 

n FLY 241 
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ferromagnetic plane and between the plane and the non- ferromagnetic fluid. The 
total interfacial energy is now 

u, = ~ s l a l d s + ~ ~ * a b d s + ~ = - ~ * ~ ~ d s .  

This potential up to an additive constant is given by 

u,= J s l a l ~ - J  a 2 ~ ,  (3.7) 
s, 

with u, = a: - a;. 
We consider again the potential energy, with the interfacial energy given by (3.7). 

The admissible displacements or the interface variations on S, and L must be done 
along the plane E.  The variations of the potential are now 

t x (a, n, - a2 k) Mdl, (3.8) 

t is a unit tangent vector to  L ,  n, is a unit normal vector to S ,  and k is a unit upward 
vector. As it can be seen, the variations (3.8) are null for all admissible displacements 
68 if and only if 

G(Ol)  = pgz+aC-&, = c on S,-L. (3.9) 

Here c is a constant, and 
a, = a, cos p, (3.10) 

where p is the contact angle, see figure 1. The new condition (3.10) is nothing but the 
Young’s boundary condition. 

3.3. Minimization algorithm 
Here again we consider the same modified potential, and we construct the new 
surface Sk+’ in such a way that : 

(S”+’Sk + e(Gk(Qf)  + A’) 

and each point of Lk is translated by a vector such that its normal component is 

-€(a2-a1 cos p). 

4. Computation of the self-field 

Maxwell’s system ( 2 . 6 ~ 4 )  with an external uniform field H, reduces to: 
We shall consider a ferrofluid with a linear magnetization law M = xo H ;  then the 

V2u ,  = 0 in O,, ( 4 . 1 ~ )  

V 2 u ,  = 0 in O,, (4.lb) 

u, = u, on S ,  ( 4 . 1 ~ )  

au, au, - 
(l+xo)--- - -xoHo.n on S, 

an an 
(4.1 d )  

u2 = O(l/lxl) a t  infinity. (4.1 e)  
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In this case the magnetic energy can be written, cf. Zouaoui (1991), 

with H, = H ,  k ,  where k is a vertical upward vector. 
We shall also use a reduced potential, in terms of V,, the volume of the drop: 

with 
a2 u*=- U z * = -  Z a,*=--, 

H ,  V t ’  V i ’  a1 

S.  ,%,,. s:=+ ( i = l , 2 ) ,  Y * = -  
V %  a1 V i ’  

(4.3b) 

(4.3c) 

(4 .3d)  

B,  and B, are respectively the magnetic and the gravitational Bond numbers. 
The relations (4.1), (4.3) correspond to the case of a sessile drop; to recover the case 

of a free drop, it is sufficient to set B, equal to zero, and to make the interface S,  
vanish. 

The magnetic potential will be calculated by the boundary-integral technique, cf. 
Brebbia, Telles & Wrobel (1984). Let us first derive an integral equation for the 
potential and its normal derivative. 

Let u* be a radial fundamental solution of the Laplace equation, i.e. u* satisfies 

v;u*(x,Y) = --6,(Y), 

where 6,(y) is the Dirac distribution concentrated at x. It is known that if u is 
harmonic in the domain D, then u satisfy the following integral equation: 

with 

au*/an, is the normal derivative with respect to y. In  fact w(x) is the solid angle 
under which the surface al2 is seen from x. Therefore c(x) is equal to 0 if x is outside 
52, 4 if x is on a regular point of 352 (i.e. a point where a52 has a tangent plane), and 
1 if x is in 52. 

If u = (ul, u2) satisfies the system (4.1), for x on the boundary aQ, the potential and 
its normal derivative q(x) satisfy the following relations : 

with k(x) = ( 1 / x o ) - ( w ( x ) / 4 n ) ;  and q* is the normal derivative of u* 
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To obtain the above relation let us suppose that u, is known, then u1 will satisfy 

vau, = 0 in 51,, ( 4 . 6 ~ )  

u1 = U, on aQ,. (4.0b) 

the following system : 

And if u1 is known we have the following exterior problem for u,: 

V2u2=0 in Q,, ( 4 . 7 ~ )  

and Vu,  = 0 

(4.7b) 

(4.7c) 

We can apply the integral formula (4.4) to the solutions of (4.6) and (4.7): 

Because of the condition (4.7c), the integral in (4.8b) reduces to an integral on af2 
only. If we take into account (4 .1~)  and (4.ld), (4.8b) becomes 

L c 

and (4.9) becomes 

If we multiply (4.10) by (1 +xo) and add the result to (4.1 1) we obtain ( 4 . 5 ~ ) .  Finally 
the sum of (4.10) and (4.11) gives, up to xo, (4.5b). 

The surface aQ, has a meridian line composed of two curves C, and C,. Of course 
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C ,  does not exist for the case of the free drop, and it is a line segment for the case of 
a sessile drop. These two curves can be divided into intervals (Mi,Mi+l)  and the 
functions u and q are interpolated by polynomial expressions on each interval. The 
unknowns are now the values uf ,  q1 ofu and q on each node Ml. Then ( 4 . 5 ~ )  (4.5b) are 
transformed into the following algebraic system, see Zouaoui (1991) : 

(4.12a) 

(4.12 b )  
1 N 

z g t , q ,  = - - - - i + C f -  
5-1 X O  

This system of 2N equations with 2N unknown is solved by the Gaussian elimination 
method. 

5. Results and discussion 
The numerical calculus of the field has been tested with ellipsoidal shapes, because 

the exact solution is known in this case. For 10 points of discretization the difference 
is less than lo-'. The meridian curve, and therefore the normal vector, are 
interpolated by B-splines, see De Boor (1987). Let us describe some features of the 
numerical treatment : 

For optimizing the computation time, the parameters B, and B, are slowly 
increased step by step, The initial shape is the preceding calculated equilibrium 
shape. The parameter B in (3.5) is initialized at  unity, and is divided by two if the 
energy has not decreased. If 8 becomes small (typically < but the maximum 
value of 68,, given by (3.4) remains greater than 5 x we increase the number of 
discretization points, and this number varies from 40 to 400 for shape with rapidly 
varying curvature. Equilibrium is reached if 68,, is smaller than 5 x 

It is known, see Brancher & Zouaoui (1987) that when the susceptibility x0 is of 
order one, ellipsoids are almost exact solutions. We have compared our solutions (for 
the free drop) with the solutions obtained by ellipsoids, and the agreement is good. 
However, when the curvature is rapidly varying, a kind of interfacial wave (small 
amplitude and small wavelength) can appear, These waves produce small variations 
of the shape but high oscillations of the curvature. This phenomenon takes place near 
equilibrium. Magnetic terms have small variations with respect to these waves; 
therefore, considering that all terms are constant except the curvature in the 
equilibrium equation, we numerically inverse, by Newton's method, the curvature 
operator. After only one iteration the surface is smooth and the equilibrium equation 
is satisfied. 

5.1. The free drop 
In figure 2 we can see different shapes of the drop for increasing values of B,. 
Berkovsky & Kalikmanov (1985) have studied the minimum of the energy in the set 
of ellipsoids. We can compare the calculated shapes with their results. For small 
values of B, the meridian line is very close to an elliptic curve; but when B, 
increases, the top of the drop becomes sharper and the mean curvature at this point 
differs appreciably from what it would be for an ellipse. 

In figure 3 the ratio of the length to the breadth is plotted for different values of 
the susceptibility xo. 



224 0. E .  Se'ro-Cuillaume, D. Zouaoui, D. Bernardin, and J. P .  Brancher 

FIGURE 2. Equilibrium shapes of a free drop for different values of B,. 

FIGURE 3. Ratio of the length to the breath of a free drop, for different values of x,,. 
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FIQURE 4. Several shapes of a sessile drop for B, below the critical value. 

FIGURE 5. Several shapes of a sessile drop for B, above the critical value. 

5.2. The sessile drop 
We shall focus on the wetting drop case, that is when the angle /3 is less than in. For 
Bg lower than a critical value the height of the drop is an increasing function of B,. 
There is an inversion of the curvature for B,  great enough, see figure 4 where various 
shapes are drawn for B, = 5. 

If B, exceeds the critical value, some peaks appear on the drop, and when B,  
increases, the centre of the drop jumps suddenly, see figure 5. 

This can be seen more clearly on figures 6 and 7. In figure 6 the height of the drop 
is plotted versus B, for different values of B,. The jump between two equilibrium 
positions corresponds to a hysteresis phenomenon, which appears for B, around 10. 
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0 10 20 30 40 50 60 70 
B* 

FIQURE 6. Height of a sessile drop versus B, for different values of B,. 

10 20 30 40 
B m  

FIQURE 7 .  Height of a sessile drop at B, = 10 for increasing and decreasing values of B,. 

In figure 7 we plot, at B, = 10, the height of the drop for increasing and decreasing 
values of B,. A hysteresis cycle clearly appears. 

The number of peaks which appear, see figure 6,  and therefore the wavelength 
depend on the value of B,. When B, increases, the drop at B,  = 0 becomes flatter and 
flatter, and looks like a strip, see figure 8. It is tempting to compare the wavelength 
obtained from a linear analysis for the case of a strip, of thickness e ,  of ferrofluid lying 
on a solid plane, see figure 9. 

To calculate the interface wavelength for the case of the strip, we shall consider 
non-dimensional variables. Let u: and u: be the upper and lower value of the 
magnetic potential u2. The horizontal surface z = 1 and the field potentials u1 = 
- xo z / (  1 + xo) ,  ui = - xo/( 1 + x o ) ,  ui = 0 are solutions of the free-surface problem. 
Let us consider now a perturbation Sy of the interface ; the equilibrium equation up 
to first order is 

V2Sy + B, Sy - xo B,(SH. k) = 0, (5.1) 
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FIGURE 8. Shapes of the drop for B, increasing and B,  = 0. 

FIGURE 9. A strip of ferrofluid on a solid plane. 

Here SH is the perturbation of the magnetic field due to the perturbation of the 
interface. And it can be shown (Brancher & SBro-Guillaume 1983), that 

with 
6H = VV,, (5.3) 

v2V,=o, O < z < l ,  (5.4) 
V 2 % = 0 ,  z < o ,  z >  1, (5.5) 

v,-v,=o, z = o ,  (5.7) 

av, av, 
aZ a2 

(l+xo)--- = 0, z = 0, z = 1. 

If Sy is an eigenfunction of the Laplace operator, i.e. which satisfies the equation 

V 2 ( 6 ~ )  = - k 2 S y ,  



228 0. E .  Siro-Guillaume, D .  Zouaoui, D .  Bernardin, and J .  P .  Brancher 

B* 
10 

13 

20 

25 

30 

40 

B m  

20 
24 
27 
30 

20 
30 

20 
25 
35 
40 

10 
20 
25 
40 

10 
15 
20 
25 
30 
35 
40 
50 

10 
15 
20 
25 
30 
35 
40 
48 

e 

0.368 
0.368 
0.368 
0.368 

0.335 
0.335 

0.3256 
0.3256 
0.3256 
0.3256 

0.2259 
0.2259 
0.2259 
0.2259 

0.1719 
0.1719 
0.1719 
0.1719 
0.1719 
0.1719 
0.1719 
0.1719 

0.1616 
0.1616 
0.1616 
0.1616 
0.1616 
0.1616 
0.1616 
0.1616 

B:, 
0.829 
0.829 
0.829 
0.829 

0.892 
0.892 

1.295 
1.295 
1.295 
1.295 

0.779 
0.779 
0.779 
0.779 

0.541 
0.541 
0.541 
0.541 
0.541 
0.541 
0.541 
0.541 

0.638 
0.638 
0.638 
0.638 
0.638 
0.638 
0.638 
0.638 

B:, 
5.76 
6.91 
7.78 
8.64 

5.24 
7.86 

5.089 
6.362 
8.907 

10.180 

1.766 
3.531 
4.414 
7.063 

1.343 
2.015 
2.687 
3.359 
4.031 
4.702 
5.374 
6.718 

1.263 
1.895 
2.526 
3.158 
3.789 
4.421 
5.032 
6.063 

4 4 
0.974 3.178 
1.107 3.449 
1.194 3.659 
1.252 3.870 

1.244 2.649 
1.568 3.174 

2.142 1.99 
2.059 2.157 
2.219 2.504 
2.097 2.684 

2.196 1.471 
2.333 1.710 
2.394 1.836 
2.436 2.238 

2.417 1.322 
2.432 1.417 
2.486 1.515 
2.511 1.616 
2.557 1.721 
2.606 1.829 
2.657 1.939 
2.789 2.166 

1.202 1.125 
1.265 1.195 
1.261 1.268 
1.322 1.343 
1.312 1.420 
1.363 1.501 
1.344 1.528 
1.407 1.716 

TABLE 1. Comparison of the wavelengths obtained by the linear analysis and by the direct 
computation 

then the solution of system (5.4)-(5.8) is 

V, = (A,  eckz +B,  ekz) 6y(x, y),  (5.9) 

(5.10) 

We can proceed to an analysis in normal modes with Sy = sin k - x ,  k being the 
modulus of k and x the vector position (x, y). A direct calculation shows that the 
coefficients needed are 

B, = ~ ( 2 + ~ ~ ) ~ , ,  t = ek, (5.11) A ,  = X 3  
( 1 + xo)( (2  + xo)2 t2  - xi) ’ x o  

and (5.1) reduces to - k2 +B,- B,  xo(B, ek - A ,  e-k) k = 0. (5.12) 
The lowest positive solution of (5.12) is the wave vector modulus of the wave which 
appears a t  the bifurcation. A comparison is made in table 1 ,  e is the thickness of the 
drop, with the results given by the computation ; Bi and BL are the new values of the 
Bond numbers, i.e. when the new length unit is e .  We compare A, and A,, the 
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- 
-1 .5  

FIGURE 10. Shapes of a non-wetting drop, p = in, for B, = 5 and different values of B,. 

wavelengths obtained respectively by computation and linear analysis. The 
agreement must become better as B, increases. The wavelengths agree for B, = 20, 
25 and 40 but not for B, = 30. In  fact B, = 30 is a transition value for the number 
of peaks, a third peak appears around this value. Therefore there are boundary 
effects. As expected the gap between the values of the wavelengths increases when 
B,  increases. 

5.3.  The non-wetting drop 
When ,I3 > kn, the ferrofluid does not wet the plane. For information we have plotted 
several equilibrium shapes for different values of B,, see figure 10. 

5.4. Discussion 
If B, is about 13 the peaks which have appeared at the interface increase and the 
centre of the drop falls until it touches the plane; and the algorithm does not 
converge because, most probably, in that case the drop does not remain 
axisymmetrical. We suppose that beyond a critical value of B, the drop will separate 
in two or several drops. 

The modellization of the interactions of the drop with the plane is really simple, 
and the magnetization law is linear. However, hysteresis appears and is ex- 
perimentally confirmed, see Brancher & Zouaoui (1987). And thus we can confirm 
that the method and the algorithm are good and permit successive bifurcations to be 
followed. 

Appendix 
Let us consider the problem of the minus sign before Em in (2.7). We recall that 

z = O(a, t )  is the Lagrangian description of the movement of the particles. The aim of 
this Appendix is to show that the coenergy must be varied with respect to a fixed 
current. We can consider the magnetization law 

B = p ( H )  H (A 1) 
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or in equivalent form 

Relation (A 2) is the one-dimensional form of (A l ) ,  thus in (A 2) B and H can be 
positive or negative numbers. We suppose that this law is smooth and has an inverse : 
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B = $ ( H ) .  (A 2) 

H = v(B)B, H = $(B).  (A 31, (A 4) 

Let us define magnetic coenergy and energy by 

Em = 1 j: $(?I) dy dQ, E: = j sp $(x) dxdQ. (A 5 )  
RS R3 

A variation SH in Em produces the variation SE, = S R 3  $ ( H )  SH dQ but as B and H are 
parallel, 

p ( H )  H*SH = &(H) 6- = p ( H )  HSH = #H SH, 

taking ( A  1 )  into account we obtain 

SE, = IR3B-SHdQ 

which shows that Em is the coenergy. The relation (2.7) is obtained with #(H)  = 
pu, (H+M(H))  in Q, and poH in Q,. Using the same argument one can show that E;F, 
is the energy. It is now easy to see, cf. Landau & Lifshitz (1990), that the energy 
(coenergy) is the Legendre transform of the coenergy (energy), that is 

E$(B) = SUP B.HdSZ-E,(H) 
H ( J R 3  

Thus the following relation holds : 

E g ( B )  + E,(H) = B-  N U .  
J R 3  

The coenergy and the energy are also functions of 8, the position of the particles, 

E,(H, 61, E3B3 8). (A 7) 

But in (A 7 )  the fields B, Hand  6 are not in fact independent variables, because if the 
particles are moved the fields lines will be deformed. We must introduce variables 
linked with the generator. So let us consider the Maxwell equations: 

U x H = j , , ,  V - B = O ,  (A 8)7 (A 9) 

with appropriate boundary conditions ; j,, is the current density in the inductor. 
From (A 9) we can consider the vect,or potential A such that 

V x A = B .  (A 10) 

Then from (A 8)-(A 10) it is easy to see that 

where % is the inductor. The relations j,, --t H and A + B can be considered as a 
change of variables. In (A 6)-(A 7)  the energy and coenergy become functions of 
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FIQURE 1 1 .  Shape of the inductor. 

these new variables. This inductor V is represented, for simplicity, by a torus; the 
lateral surface of V is 8, and the generator can be modelled by a cutting surface S (the 
following argument can be easily extended to an inductor with a boundary of any 
genus, adding as many cutting surfaces as needed), see figure 11.  

Following Bossavit (1987) we consider the potential @ such that : 

I V W = O  in %?, 

- = 0  on S, 
an 
a@ 

[@Iz = 1.  

\ V W = O  in %?, 

I - = 0  on S, 
an 
a@ 

[@Iz = 1.  J 
[@Iz is the jump of CD across C. The current density vectorj,, can be uniquely 
decomposed using the potential @: 

j , ,  = I*V@+j’ ;  (A 13) 

j !  verifies the relations :j’ = V x E in V and a x n = 0 on S, and it is orthogonal to VQS, 
that is 

r 

The same decomposition holds for the vector potential A : 

A = U*V@+A’ .  (A 15) 

Taking (A 14) into account forj’ and A‘, we can write 

A S j , ,  dQ = I*U* Jv (V@)z dQ + Jw A’sj’ dsz. s, (A 16) 

Note that the integral sr (a@/an) ds is constant for any surface c’ cutting V (but 
different from the surface C). But I ,  the total current in the inductor, is given by 

Therefore, if I is given, I* is known by (A 17) ,  and the fieldj’ in (A 13) plays no role 
and can be set to 0. And then (A 16) reduces to 

A -jex dQ = I*U* 

Once I*, U* are given, j , ,  and A are known and then N and B can be uniquely 
determined ; U* is a flux such that its time derivative can be considered as the tension 
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of the generator. For simplicity we can call I* jw (VQ)’ dQ again I * .  With these new 
independent variables (A 6) can be written 

E:(U*, 0 )  + E,(I*, 0 )  = U*I*. (A 19) 

The Legendre transformation can be performed with U* and I*. Then 

From (A 19), (A 20) (and taking into account the remark a t  the end of $2) it is clear 
that to obtain the force we must vary the coenergy with respect to the position with 
a fixed external current, or vary minus the energy with a fixed flux. 
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